Sub Soil Modification 2015 Point Pass Agricultural Bureau

RURAL SOLUTIONS SA PIRSA

David Woodard February 2016

Primary Industries and Regions SA

NRM Agricultural and Fishing Innovation Grant Point Pass Agricultural Bureau

Sub soil Modification

Based on work conducted by Rick Peries DEPI Victoria and Researchers from Southern Farming Systems, La Trobe University, Victoria

Targeting a range of hostile clays – heavy textured, sodic, slightly saline, those with bleached A2, also hard capped – delved and not delved

Clay modification by microorganisms and organic matter to increase size of macro pores - improve clay ped structure, infiltration, drainage, root access & volume, air supply

Proof of concept stage – under a range of soils and conditions, lower rainfall than early Victorian sites

Clay subsoil changes -P Sale, R Peries, et al

4 years after Lucerne pellets at 30 -40 cm in clay Before After

Subsoil treatments

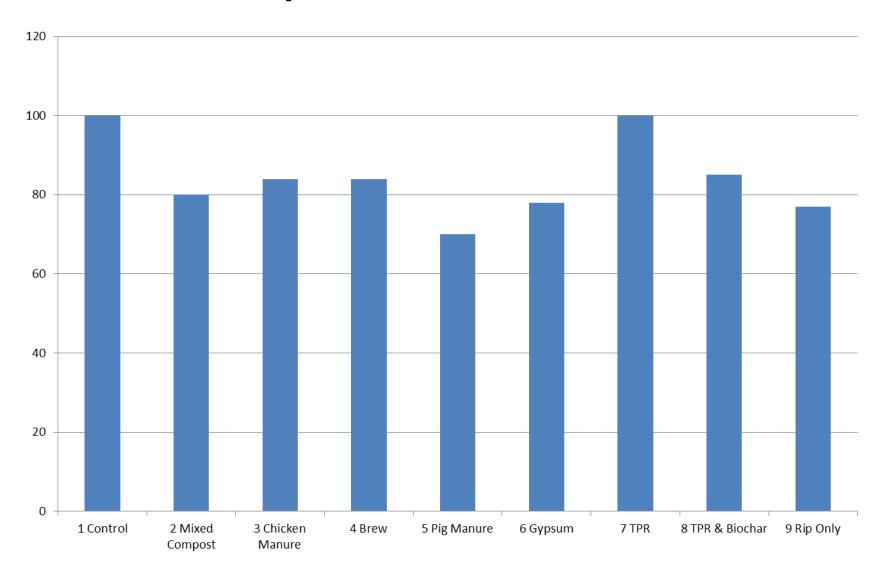
- Control
- Rip Only
- Plant based compost 20 to 40 t/ha
- Plant and Animal manure based compost 20 to 40 t/ha
- Neutrog Chicken Manure pellets 20 40 t/ha
- Gypsum 10 t/ha
- Brew Mixture of Compost, chicken manure pellets and gypsum – 40t/ha
- TPR and Grape Marc mixtures
- Compost and Biochar
- Pig Manure Compost

Robertstown Site - Low OC, Sodic

Depth cm	Texture	Colour	Gravel %	pH H₂O	pH CaCl ₂	Acid Reactio n Free % Lime		Ece dS/m	Org.C %	mg/kg		CI mg/kg	Avail. K mg/kg	mg/kg	SO₄-S mg/kg	Trace Elements (DTPA) mg/kg				CEC cmol(+)/kg	Exchangeable cations cmol(+)kg				
																Cu	Zn	Fe	Mn	, ,	Ca	Mg	Na	K	ESP
Paddock	FSCL	Orange																							
							,											,		9					4
0-10	FSCL	Orange	5-Jan	7	6.2	0.18 N	0.109	1.58	0.43	15	32	65	275	0.87	7.2	0.91	0.37	10.8	11.7	5.68	3.08	1.31	0.64	0.7	11.3
10-30	MClay	Dk Red	0	9	8	0.28 N	0.452	3.42	0.48	5	3	395.3	412	5.8	29.1					19.91	6.68	7.22	4.95	1.1	24.8
30-40	LMClay	Dk Red	0	9.2	8.3	2.5 Mod	1.109	6.06	0.32	3	5	893	572	16.52	128			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		31.05	8.56	10.9	10.2	1.5	32.7
70+	LMClay	BrOr	0	9.3	8.3	31 V High	0.978	7.1	0.17	2	3	825.6	390	9.69	138					24.92	9.29	6.91	7.72	1	31
																					75%o	20%	<6%	5%	
Critical / Ideal values				6-8	5-7	***	<0.7	8	1.5		35		120	<15	6	0.2	0.5		1.0	15	f CEC	of CEC	of CEC	of CEC	<6

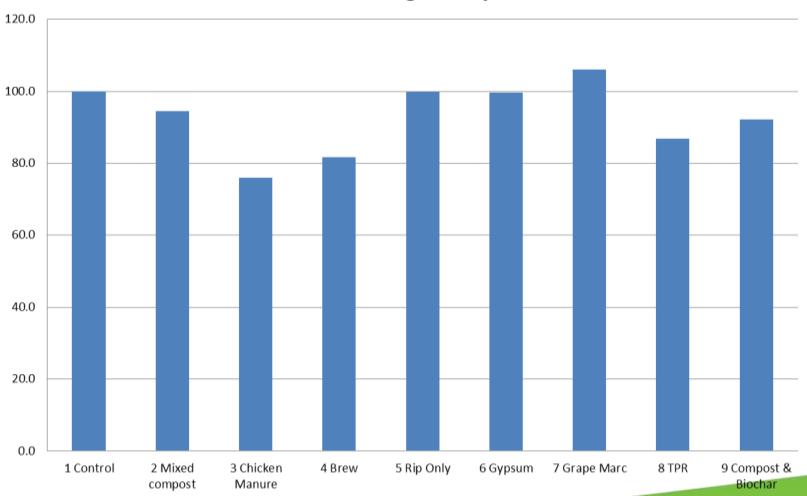
Robertstown site

Dry matter relative to Control treatment



Point Pass – Lentils after 30mm rain

Lentil yield as % of Control


Ebenezer Sub soil Modification site

Normally Waterlogged, not in 015, heavy textured clay

Yield as % of Control

Ebenezer Sub Soil Manuring Grain yield - % of Control

Giles Corner –Cracking clay, No-Till, stubble retained, Controlled Traffic 15 years

Regions SA

Taller crop, Pod height 20 to 30cms Higher

Alma South – Beans growth response

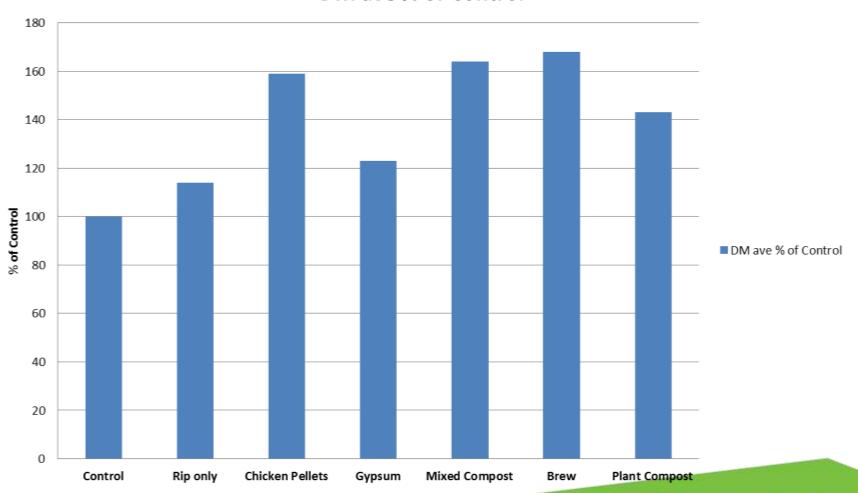
Rip only – similar to Control

Brew - Compost, Gypsum & Chicken Manure

Long Plains – Barley limited by rainfall

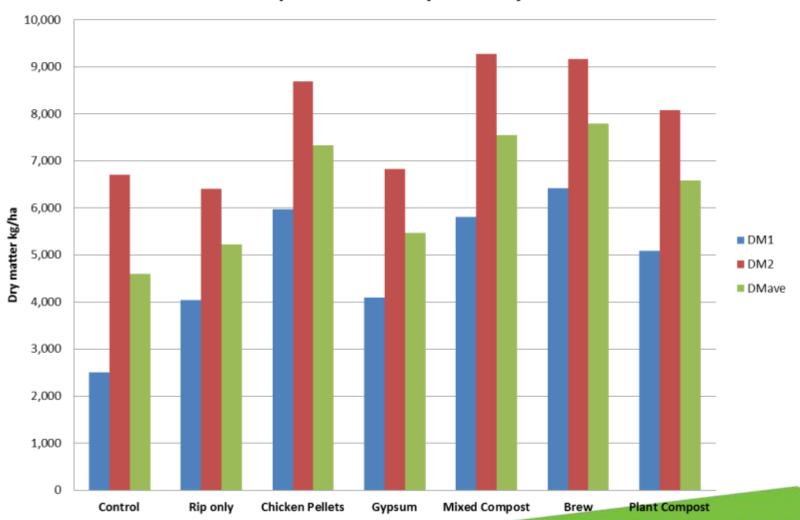
Halbury – Barley 6t/ha

Halbury - Control


Stockport Sub soil Modification site

Waterlogging variability due to slope, heavy textured clay

Dry matter relative to Control treatment


DM ave % of Control

Dry matter yield Kg/ha

Stockport Subsoil dry matter yield

